Preliminary Note

On the reaction of 1,1-dichloropolyfluoroalkylsulfenyl chlorides with lithium hexamethyldisilylamide

Leonid N. Markovski, Vadim M. Timoshenko, Alexander B. Rozhenko and Yuri G. Shermolovich*

Institute of Organic Chemistry, Academy of Sciences of the Ukraine, 253660 Kiev (Ukraine)

(Received November 23, 1992; accepted February 17, 1993)

Abstract

1,1-Dichloropolyfluoropentylsulfenyl chlorides react with lithium hexamethyldisilylamide with the formation of *N*,*N*-bis-(trimethylsilyl)-1-chloro-polyfluoropentyl-1-en-sulfenamide.

We have found that the reaction of 1,1-dichloro-2,2,3,3,4,4,5,5-octafluoropentylsulfenyl chloride (Ia) and 1,1,2-trichloro-2,3,3,4,4,5,5-heptafluoropentylsulfenyl chloride (Ib) [1] with lithium hexamethyldisilylamide, irrespective of the reagent ratio, leads not only to the substitution of a bis(trimethylsilyl)amino group for the chlorine atom at sulfur, but also to dehalogenation with the formation of N,N-bis(trimethylsilyl)-1-chloro-2,3,3,4,4,5,5-heptafluoropentyl-1-en-sulfenamide (II). The highest yield of compound II is attained when sulfenyl chloride and lithium hexamethyldisilylamide are present in a 1:2 ratio.

$$H(CF_{2})_{3}CFXCCl_{2}SCl + LiN[Si(CH_{3})_{3}]_{2} \longrightarrow$$
(Ia, b)

$$HC^{5}F_{2}C^{4}F_{2}C^{3}F_{2}C^{2}F = C^{1}CISN[Si(CH_{3})_{3}]_{2}$$
(II)

a, X = Cl; **b**, X = F

It should be noted that the formation of the polyfluorovinyl moiety is typical only of sulfenyl chlorides I, while sulfides III [2] and sulfenamides IV, which also contain the $H(CF_2)_3CF_2CCl_2$ substituent, undergo no reaction with LiN[Si(CH₃)₃]₂ under similar conditions. $H(CF_2)_3CF_2CCl_2SR$

III, R = Alk; IV, $R = NAlk_2$

Compound II is a colorless, vacuum-distillable liquid, which is stable to water and methanol and does not change upon heating at 140 °C for 1 h. The composition of compound II has been confirmed by elementary analysis and mass spectrometry, and its structure demonstrated by NMR spectroscopy.

The ¹H NMR spectrum of the compound obtained contains two sets of signals for the trimethylsilyl protons and for the proton of the HCF_2 moiety with an intensity ratio of 1:1.9 in the case of sulfenyl chloride **Ia** and with a ratio of 1:5.7 in the case of sulfenyl chloride **Ib**. Two sets of signals with similar intensity ratios were also recorded in the ¹⁹F and ¹³C NMR spectra. Thus, the reaction seems to result in a mixture of *cis* and *trans* isomers.

The ¹³C NMR spectrum of the most abundant isomer showed signals for the carbon atoms of the trimethylsilyl groups (SiCH₃), a group of multiplets corresponding to the carbon atoms of the HCF₂CF₂CF₂ moiety, as well as doublets for vinyl carbons of the $-C^2F=C^1Cl-S-$ moiety. The values obtained were in good accord with the data for the ¹³C NMR spectrum of the model compound V [1]. The parameters of the carbon spectrum obtained for the isomer present in the smaller amount were not very different from those for the predominant isomer, except that the ²J_{C¹F} and ³J_{C¹F} coupling constants were appreciably smaller in the case of the low yield isomer, and the ¹J_{C²F} coupling constant was, in contrast, considerably larger.

 $\frac{HC^{5}F_{2}C^{4}F_{2}C^{3}F_{2}}{F}C = C \xrightarrow{SCH_{2}Ph}{SCH_{2}Ph}$ (V)

Experimental

In a typical experiment, to a solution of sulfenyl chloride I (0.01 mol) in ether (30 ml) was added with stirring over 20 min at room temperature a solution of Li silazane (0.02 mol) in ether (75 ml). The resulting mixture was stirred for 4 h, the precipitated solid filtered off and the residue fractionated *in vacuo*. The yield of compound II obtained was 75–81%, b.p. 69–70 °C/ 0.05 mmHg. ¹H NMR (C₆D₆, TMS) δ : 0.13 (*) (s, 18H,

^{*}Author to whom correspondence should be addressed.

 $SiCH_3$; 0.15 (s, 18H, SiCH₃); 5.17 (tt, 1H, J=51.9, 5.1 Hz, CHF₂); 5.22 (*) (tt, 1H, J = 51.6, 5.1 Hz) ppm. ¹⁹F NMR (C₆D₆, CFCl₃) δ : -137.0 (*) (dm, 2F, J=51 Hz, CHF_2 ; -137.0 (dm, J = 51 Hz, CHF_2); -129.3 (*) (m, $2F, CF_2$; -129.0 (m, 2F, CF₂); -121.7 (*) (m, 1F, C=CF; -115.8 (m, 1F, C=CF); -113.2 (m, 2F, CF₂); -113.0 (*) (m, 2F, CF₂) ppm. ¹³C NMR (C₆D₆, TMS) δ: 1.31 (*) (s, SiCH₃); 1.43 (s, SiCH₃); 108.75 (tt, J = 251.0, 31.4 Hz, C⁵); 108.76 (*) (tt, J =251.0, 31.4 Hz, C⁵); ~111.2 (m, C⁴); ~111.3 (*) (m, C³); ~111.4 (m, C³); 134.96 (*) (dt, J = 36.2, 2.5 Hz, C¹); 135.48 (dt, J = 13.5, <1Hz, C¹); 137.09 (*) (dt, J = 248.5, 28.7 Hz, C²); 137.17 (dt, J = 260.9, 31.5 Hz, C²) ppm. Analysis: Found: C, 31.25; H, 4.42; Cl, 8.46; F, 30.64; N, 3.75; S, 7.60%; M⁺, 421. C₁₁H₁₉ClF₇NSSi₂ requires: C, 31.31; H, 4.54; Cl, 8.40; F, 31.52; N, 3.32; S, 7.60%; M⁺, 421.

1,1-bis(benzylthio)-2,3,4,4,5,5-heptafluoro-1-pentene (V) [1]: ¹³C NMR (C₆D₆, TMS) δ : 37.95 (d, J = 4.5 Hz, SCH₂); 39.21 (d, J = 1.2 Hz, SCH₂); 108.97 (tt, 250.9, 30.8 Hz, C⁵); ~111.2 (m, C⁴); ~111.3 (m, C³); 127.56

8

(dt, J = 20.3, 1.8 Hz, C¹); 146.54 (dt, J = 263.4, 26.4 Hz, C²); 128.32; 128.33; 129.35; 129.38; 129.80; 129.88; 137.27; 137.79 (s, C_{arom}) ppm.

NMR spectra were measured using a Varian VXR-300 spectrometer, frequency 299.96 MHz (for ¹H), 282.14 MHz (for ¹⁹F) and 75.43 MHz (for ¹³C), the chemical shifts quoted being from internal TMS and CCl_3F .

Acknowledgement

This work forms part of a project supported financially by the State Committee for Science and Technology of the Ukraine.

References

- 1 L.N. Markovski, E.I. Slusarenko, V.M. Timoshenko, E.I. Kaminskaja, A.G. Kirilenko and Yu.G. Shermolovich, *Zh. Org. Khim.*, 28 (1992) 14.
- Yu.G. Shermolovich, E.I. Slusarenko, V.M. Timoshenko, A.B. Rozhenko and L.N. Markovski, J. Fluorine Chem., 55 (1991) 329.

^{*}Isomer formed in greater amount.